Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 383(6684): eadg0564, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38359115

ABSTRACT

Influenza viruses escape immunity owing to rapid antigenic evolution, which requires vaccination strategies that allow for broadly protective antibody responses. We found that the lipid globotriaosylceramide (Gb3) expressed on germinal center (GC) B cells is essential for the production of high-affinity antibodies. Mechanistically, Gb3 bound and disengaged CD19 from its chaperone CD81, permitting CD19 to translocate to the B cell receptor complex to trigger signaling. Moreover, Gb3 regulated major histocompatibility complex class II expression to increase diversity of T follicular helper and GC B cells reactive with subdominant epitopes. In influenza infection, elevating Gb3, either endogenously or exogenously, promoted broadly reactive antibody responses and cross-protection. These data demonstrate that Gb3 determines the affinity and breadth of B cell immunity and has potential as a vaccine adjuvant.


Subject(s)
Antibodies, Viral , B-Lymphocytes , Germinal Center , Orthomyxoviridae Infections , Orthomyxoviridae , Trihexosylceramides , Antibody Formation , B-Lymphocytes/drug effects , B-Lymphocytes/immunology , Germinal Center/drug effects , Germinal Center/immunology , Trihexosylceramides/metabolism , Trihexosylceramides/pharmacology , Animals , Mice , Mice, Knockout , Humans , Orthomyxoviridae/immunology , Orthomyxoviridae Infections/immunology , Antibodies, Viral/biosynthesis , Antibodies, Viral/immunology
2.
Science ; 383(6679): 190-200, 2024 01 12.
Article in English | MEDLINE | ID: mdl-38207022

ABSTRACT

Tumors develop strategies to evade immunity by suppressing antigen presentation. In this work, we show that prosaposin (pSAP) drives CD8 T cell-mediated tumor immunity and that its hyperglycosylation in tumor dendritic cells (DCs) leads to cancer immune escape. We found that lysosomal pSAP and its single-saposin cognates mediated disintegration of tumor cell-derived apoptotic bodies to facilitate presentation of membrane-associated antigen and T cell activation. In the tumor microenvironment, transforming growth factor-ß (TGF-ß) induced hyperglycosylation of pSAP and its subsequent secretion, which ultimately caused depletion of lysosomal saposins. pSAP hyperglycosylation was also observed in tumor-associated DCs from melanoma patients, and reconstitution with pSAP rescued activation of tumor-infiltrating T cells. Targeting DCs with recombinant pSAP triggered tumor protection and enhanced immune checkpoint therapy. Our studies demonstrate a critical function of pSAP in tumor immunity and may support its role in immunotherapy.


Subject(s)
CD8-Positive T-Lymphocytes , Neoplasms , Saposins , Tumor Escape , Humans , Dendritic Cells/immunology , Neoplasms/immunology , Neoplasms/pathology , Neoplasms/therapy , Saposins/metabolism , Transforming Growth Factor beta/metabolism , Tumor Microenvironment , Glycosylation , Immunotherapy , Immune Checkpoint Inhibitors/therapeutic use , Antigen Presentation , CD8-Positive T-Lymphocytes/immunology
3.
bioRxiv ; 2023 Sep 24.
Article in English | MEDLINE | ID: mdl-37790573

ABSTRACT

Influenza viruses escape immunity due to rapid antigenic evolution, which requires vaccination strategies that allow for broadly protective antibody responses. Here, we demonstrate that the lipid globotriaosylceramide (Gb3) expressed on germinal center (GC) B cells is essential for the production of high-affinity antibodies. Mechanistically, Gb3 binds and disengages CD19 from its chaperone CD81 for subsequent translocation to the B cell receptor (BCR) complex to trigger signaling. Abundance of Gb3 amplifies the PI3-kinase/Akt/Foxo1 pathway to drive affinity maturation. Moreover, this lipid regulates MHC-II expression to increase diversity of T follicular helper (Tfh) and GC B cells reactive with subdominant epitopes. In influenza infection, Gb3 promotes broadly reactive antibody responses and cross-protection. Thus, we show that Gb3 determines affinity as well as breadth in B cell immunity and propose this lipid as novel vaccine adjuvant against viral infection. One Sentence Summary: Gb3 abundance on GC B cells selects antibodies with high affinity and broad epitope reactivities, which are cross-protective against heterologous influenza infection.

4.
bioRxiv ; 2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37398287

ABSTRACT

Tumors develop strategies to evade immunity by suppressing antigen presentation. Here, we show that prosaposin drives CD8 T cell-mediated tumor immunity and that its hyperglycosylation in tumor DCs leads to cancer immune escape. We found that lysosomal prosaposin and its single saposin cognates mediated disintegration of tumor cell-derived apoptotic bodies to facilitate presentation of membrane-associated antigen and T cell activation. In the tumor microenvironment, TGF-ß induced hyperglycosylation of prosaposin and its subsequent secretion, which ultimately caused depletion of lysosomal saposins. In melanoma patients, we found similar prosaposin hyperglycosylation in tumor-associated DCs, and reconstitution with prosaposin rescued activation of tumor-infiltrating T cells. Targeting tumor DCs with recombinant prosaposin triggered cancer protection and enhanced immune checkpoint therapy. Our studies demonstrate a critical function of prosaposin in tumor immunity and escape and introduce a novel principle of prosaposin-based cancer immunotherapy. One Sentence Summary: Prosaposin facilitates antigen cross-presentation and tumor immunity and its hyperglycosylation leads to immune evasion.

5.
J Hepatol ; 79(5): 1214-1225, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37348791

ABSTRACT

BACKGROUND & AIMS: Glycoprotein A repetitions predominant (GARP) is a membrane protein that functions as a latent TGF-ß docking molecule. While the immune regulatory properties of GARP on blood cells have been studied, the function of GARP on tissue stromal cells remains unclear. Here, we investigate the role of GARP expressed on hepatic stellate cells (HSCs) in the development of liver fibrosis. METHODS: The function of GARP on HSCs was explored in toxin-induced and metabolic liver fibrosis models, using conditional GARP-deficient mice or a newly generated inducible system for HSC-specific gene ablation. Primary mouse and human HSCs were isolated to evaluate the contribution of GARP to the activation of latent TGF-ß. Moreover, cell contraction of HSCs in the context of TGF-ß activation was tested in a GARP-dependent fashion. RESULTS: Mice lacking GARP in HSCs were protected from developing liver fibrosis. Therapeutically deleting GARP on HSCs alleviated the fibrotic process in established disease. Furthermore, natural killer T cells exacerbated hepatic fibrosis by inducing GARP expression on HSCs through IL-4 production. Mechanistically, GARP facilitated fibrogenesis by activating TGF-ß and enhancing endothelin-1-mediated HSC contraction. Functional GARP was expressed on human HSCs and significantly upregulated in the livers of patients with fibrosis. Lastly, deletion of GARP on HSCs did not augment inflammation or liver damage. CONCLUSIONS: GARP expressed on HSCs drives the development of liver fibrosis via cell contraction-mediated activation of latent TGF-ß. Considering that systemic blockade of TGF-ß has major side effects, we highlight a therapeutic niche provided by GARP and surface-mediated TGF-ß activation. Thus, our findings suggest an important role of GARP on HSCs as a promising target for the treatment of liver fibrosis. IMPACT AND IMPLICATIONS: Liver fibrosis represents a substantial and increasing public health burden globally, for which specific treatments are not available. Glycoprotein A repetitions predominant (GARP) is a membrane protein that functions as a latent TGF-ß docking molecule. Here, we show that GARP expressed on hepatic stellate cells drives the development of liver fibrosis. Our findings suggest GARP as a novel target for the treatment of fibrotic disease.

SELECTION OF CITATIONS
SEARCH DETAIL
...